Group-wise Median vs Element-wise Median

Given a discrete set X partitioned into N subsets X_{i}, define n_{i} to be the number of elements in partition X_{i}, aka the size ${ }^{1}$ of X_{i}. Without loss of generality, we can label the partitions X_{i} in such a way that

$$
n_{0} \leq n_{1} \leq \cdots \leq n_{i} \leq n_{i+1} \leq \cdots \leq n_{N}
$$

which then allows us to order the partitions.
The median partition, that is, the partition for which half of the partitions are bigger and half are smaller, is then $X_{N / 2}$ (for ease of notation we will assume for everything that follows that N is even; if N is odd the argument follows along similar lines).

The element-wise median partition is the partition for which "half" of the elements of X are in bigger partitions and "half" of the elements are in smaller partitions. Specifically, it is the partition X_{m} such that

$$
f(m) \equiv \frac{\sum_{i=m}^{N} n_{i}}{\sum_{i=0}^{N} n_{i}} \geq \frac{1}{2}
$$

but $f(m+1)<\frac{1}{2}$.
Theorem We now prove that the element-wise median is always at least as large as the median, that is, that $m \geq \frac{N}{2}$.

To start, it is clear from the size-ordering of the partitions that

$$
\sum_{i=\frac{N}{2}}^{N} n_{i} \geq \sum_{i=0}^{\frac{N}{2}-1} n_{i}
$$

from which it naturally follows that

$$
2 \cdot \sum_{i=\frac{N}{2}}^{N} n_{i} \geq \sum_{i=0}^{\frac{N}{2}-1} n_{i}+\sum_{i=\frac{N}{2}}^{N} n_{i}=\sum_{i=0}^{N} n_{i} .
$$

Dividing both sides by $2 \cdot \sum_{i=0}^{N} n_{i}$ yields the desired expression:

$$
\frac{\sum_{i=\frac{N}{2}}^{N} n_{i}}{\sum_{i=0}^{N} n_{i}} \geq \frac{1}{2}
$$

or equivalently, $f\left(\frac{N}{2}\right) \geq \frac{1}{2}$. It clearly follows that m cannot be less than $\frac{N}{2}$, else $f(m+1) \geq \frac{1}{2}$ which violates the definition of m. Thus $m \geq \frac{N}{2}$.

[^0]
[^0]: ${ }^{1}$ note: n_{i} is related to the "frequency" of a data point, that is, if we create a new set F from X by replacing each $x \in X$ with the size n_{i} of the partition it belongs to: $F \equiv\left\{n_{i}(x) \mid x \in X\right\}$; then n_{i} is its own frequency, that is, there are n_{i} elements of value n_{i} in F.

