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Group-wise Median vs Element-wise Median

Given a discrete set X partitioned into N subsets Xi, define ni to be the number
of elements in partition Xi, aka the size1 of Xi. Without loss of generality, we
can label the partitions Xi in such a way that

n0  n1  · · ·  ni  ni+1  · · ·  nN ,

which then allows us to order the partitions.
The median partition, that is, the partition for which half of the partitions

are bigger and half are smaller, is then XN/2 (for ease of notation we will assume
for everything that follows that N is even; if N is odd the argument follows along
similar lines).

The element-wise median partition is the partition for which “half” of the
elements of X are in bigger partitions and “half” of the elements are in smaller
partitions. Specifically, it is the partition Xm such that
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Theorem We now prove that the element-wise median is always at least as
large as the median, that is, that m � N

2 .
To start, it is clear from the size-ordering of the partitions that
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from which it naturally follows that
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Dividing both sides by 2 ·
PN

i=0 ni yields the desired expression:
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2 . It clearly follows that m cannot be less than N
2 ,

else f(m+ 1) � 1
2 which violates the definition of m. Thus m � N

2 . ⇤
1
note: ni is related to the “frequency” of a data point, that is, if we create a new set F from

X by replacing each x 2 X with the size ni of the partition it belongs to: F ⌘ {ni(x)|x 2 X};
then ni is its own frequency, that is, there are ni elements of value ni in F .
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